數據挖掘側重于根據已有數據訓練出的模型推測將來的數據,機器學習還可以搞很多別的東西,例如圖像識別、圖像檢索等。你說的那些算法都是學習這兩門課的一些基礎算法,我感覺機器學習研究的領域更寬,個人理解。
大數據概念:大數據是近兩年提出來的,有三個重要的特征:數據量大,結構復雜,數據更新速度很快。由于Web技術的發展,web用戶產生的數據自動保存、傳感器也在不斷收集數據,以及移動互聯網的發展,數據自動收集、存儲的速度在加快,全世界的數據量在不斷膨脹,數據的存儲和計算超出了單個計算機(小型機和大型機)的能力,這給數據挖掘技術的實施提出了挑戰(一般而言,數據挖掘的實施基于一臺小型機或大型機,也可以進行并行計算)。?
數據挖掘概念: 數據挖掘基于數據庫理論,機器學習,人工智能,現代統計學的迅速發展的交叉學科,在很多領域中都有應用。涉及到很多的算法,源于機器學習的神經網絡,決策樹,也有基于統計學習理論的支持向量機,分類回歸樹,和關聯分析的諸多算法。數據挖掘的定義是從海量數據中找到有意義的模式或知識。?
大數據需要映射為小的單元進行計算,再對所有的結果進行整合,就是所謂的map-reduce算法框架。在單個計算機上進行的計算仍然需要采用一些數據挖掘技術,區別是原先的一些數據挖掘技術不一定能方便地嵌入到 map-reduce 框架中,有些算法需要調整。?
大數據和數據挖掘的相似處或者關聯在于: 數據挖掘的未來不再是針對少量或是樣本化,隨機化的精準數據,而是海量,混雜的大數據,數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷。?
拓展資料:
大數據(big data),指無法在一定時間范圍內用常規軟件工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。?
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而采用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。